
ROB498: Autonomous Drone for Nuclear Plant Safety
Team Pu239: Ryan Zazo, Kanav Singla, Kajanan Chinniah, Siddarth Narasimhan

1 Introduction
The goal of our capstone project is to build an autonomous drone for use in nuclear plant
inspections. Drones are a very popular site-inspection tool because of their agility and
maneuverability in cluttered environments, ability to offer a new perspective from different
viewpoints and provide new avenues for navigation. To be useful in such inspection tasks, the
drone must be able to maintain a stable hover while awaiting further instructions, follow paths
described by waypoints and autonomously avoid obstacles. This report will detail our design
procedure, the results of our tests, and what we learned in the process.

2 Design Philosophy
Central to every design is the underlying philosophy that guided it. Our team's design philosophy
revolves around three core values: safety, simplicity & elegance, and attention to detail. These
values have not only shaped our approach to the design process but have also guided our team
organization and individual responsibilities.

Safety: This is the most critical aspect of our guiding principles; to avoid injuries and harm
during operation. We achieve this by always testing our code in simulation first before executing
on the real drone. This approach helps us prevent accidents while we are in the debugging stage
and allows us to test our algorithms in a risk-free environment. Additionally, one of our
teammates, Ryan, is a certified and licensed pilot for aerial vehicles. To mitigate potential risks
and harm done to property, we have restricted the operation of our drone exclusively to Ryan,
which allows us to execute safe maneuvers during unforeseen malfunction or erratic behavior
during flight. To ensure the safety aspect of our design philosophy, we organized our team by
assigning specific roles and responsibilities related to safety. For instance, one team member was
responsible for conducting risk assessments, another for maintaining safety guidelines and
protocols, and Ryan was designated as the drone pilot.

Simplicity and Elegance: This value entails formulating solutions that are intuitive, easy to
implement, and robust. In doing so, we can streamline our workflow as everyone can contribute
to the development of each component without having a significant knowledge gap. With this in
mind, we were more focused on implementing algorithms from scratch instead of using
off-the-shelf solutions that require more background knowledge and understanding. Taking the
path of least resistance also allowed us to complete our milestones in a timely manner and gave
us enough time to build and test both in simulation and real-life. In doing so, we were able to
build solutions that were robust while exceeding the design requirements. Our team organization
followed a modular approach, where each member was responsible for a specific aspect of the
design process, such as obstacle detection or path planning. By assigning these responsibilities,
we ensured that each team member could focus on simplicity and elegance within their domain.



Attention to Detail: Attention to detail means that we always ensure every part of our solution is
clean and efficient. Our goal here was to focus on creating good documentation, following best
software practices, and ensuring rigorous testing of the design requirements. We wrote our code
following OOP principles and used GitHub for documentation, versioning, and to do code
reviews within the team. Doing this allows us to build a stronger and collaborative workflow so
that we minimize our mistakes and improve the overall quality of our solution. We established a
system of peer reviews and regular meetings to discuss progress and address any concerns.
Additionally, we assigned a team member as a quality assurance lead, responsible for overseeing
the attention to detail aspect of our design philosophy. To guide this, we also reviewed "The
Design of Everyday Things", by Don Norman [1]. This source provided us with valuable insights
into the importance of user-centered design and helped shape our approach to creating an
effective and efficient drone system.

In conclusion, our team's design philosophy, grounded in safety, simplicity & elegance, and
attention to detail, has guided our solution process and team organization. By assigning specific
roles and responsibilities related to these core values and by distributing the workload, we were
able to work more cohesively as a team throughout the term.

3 Background and Related Work
In developing our drone system, we made use of various software, hardware, and firmware
frameworks. Our choices were informed by the available hardware, our team's prior experience,
and the requirements of the project.

Figure 1: Diagram of our drone with hardware components and features. The ultrasonic sensor
was removed and has not been used for any of the challenge tasks. This photo was used as it was

the most clear one available.

3.1 Hardware Components



Our hardware components included a Jetson Nano, a Pixhawk-4 Mini, an Intel Realsense T265
tracking camera, a Sony IMX color camera, and a Terabee EVO distance sensor. These
components were chosen due to their compatibility, performance, and suitability for the specific
tasks involved in the project.

A few modifications to the drone mounting frame were made to complement our approach. An
additional frame was designed to remount the colour camera and face the front of the drone, as
shown in Figure 2. This simplified our software approach for Challenge Task 4's obstacle
recognition and avoidance.

Figure 2: Our 3D designed mount, to allow for a front-facing colour camera.

3.2 Software and Firmware Frameworks
Instead of using the standard Ubuntu 18.04 image for the Jetson, we instead opted to upgrade to
an Ubuntu 20.04 image. This would allow us to use more updated and supported software
including ROS Noetic and Python 3, both of which would grant us access to a more extensive
pool of resources and enable us to build higher quality programs. We flashed a custom patched
version of Jetpack 4.6.1 with Ubuntu 20.04 [2], which comes preinstalled with essential libraries
such as PyTorch and OpenCV.

For communication between our drone and the Jetson Nano, we utilized the MAVROS bridge,
which connects the Jetson Nano to the Pixhawk4 mini. This bridge allows for command
transmission and telemetry data reception from the drone over the ROS network. Furthermore,
for localization, we chose the AurterionVIO package, which integrates the T265 tracking
camera's visual odometry estimation into the Pixhawk's internal pose EKF. Additionally, we used
the Terabee EVO distance sensor to provide ground distance data for the Pixhawk EKF's height
estimate.

4 Design Objectives and Solution Details



In this section, we explain our methodology for completing the challenge tasks. Our objectives
(O) and metrics (M) used to measure compliance are detailed. We also include our results at the
end of each subsection.

4.1 Challenge Task 2
4.1.1 Challenge Description
The second challenge task aims to have the drone hover at a fixed altitude over an area of interest
for a specified duration. To perform well in the task, the drone must remain within a particular
zone, called the primary zone, to avoid loss of points. The task consists of 3 parts:

1. Upon receiving a LAUNCH command, the drone should ascend to the desired altitude
and begin to hover

2. Upon receiving a TEST command, the drone should remain within the primary zone for
30 seconds

3. Upon receiving a LAND command, the drone should land on the ground

This task has two modes of operation; flying with Vicon data available and flying using only
on-board sensing.

4.1.2. Objectives and Task Functional Analysis Metrics
O1.1: The drone should ascend to the specified altitude once the "LAUNCH" command is sent

● M1.1.1: Distance between the drone's altitude, measured from the Vicon, and the
specified altitude.

○ Criteria: Smaller distances are preferred.

O1.2: The drone should remain at the desired altitude (e.g. hover) over the area of interest for a
specified duration once the "TEST" command is sent.

● M1.2.1: The variation between the drone’s current x and y positions and the starting
position, all measured using the Vicon system.

○ Criteria: The drone’s x and y positions should remain within 15 cm of the±
starting position during the 30 second measurement period using both on-board
sensing and Vicon data.

● M1.2.2: The variation between the drone’s current heading and the starting heading, all
measured using the Vicon system.

○ Criteria: The drone’s heading should should remain within relative to its± 5𝑜

initial position during the 30 second measurement period using both on-board
sensing and Vicon data.

● M1.2.3: The drone’s altitude, measured using the Vicon system.
○ Criteria: The drone’s altitude should be of cm during the 30 second150 ± 10

measurement period using both on-board sensing and Vicon data.

O1.3: The drone should successfully land once the "LAND" command is sent
● M1.3.1: The drone successfully and safely descends to the ground once "LAND" is sent.

○ Criteria: Descent should happen as soon as the command is sent.

4.1.3. Challenge Task 2 Design Overview



Figure 3: Challenge Task 2 solution pipeline. Send launch command and then move position to
setpoint using MAVROS was how we achieved this task.

The Realsense T265 serves as our main odometry source, providing us a stable localization
estimate with little drift. The Terabee range sensor was used for altitude measurements, as it
provides an accurate and stable estimate for height and was found to be more reliable than the
T265. We also configured the Pixhawk's internal Extended Kalman Filter and PID controller to
fuse multiple sensors including the Realsense's IMU and Visual Odometry estimation in
QGroundControl. In order to ascend the drone to the desired altitude, we simply sent the desired
pose using topic /mavros/position_setpoint/local, supplied by MAVROS.

Our codebase was designed to be object oriented with multiple nodes to perform multiple
independent tasks. For this task, we created a single node, called our “CommNode”. CommNode
listens to the services described in the challenge documentation (LAUNCH, TEST, LAND and
ABORT) and publishes and subscribes to MAVROS topics required to receive drone telemetry
and send waypoint commands.

4.1.4. Challenge Task 2 Results
Our evaluation of challenge task 2 was split into two categories. First, we verified our solution in
simulation. We tested all metrics in simulation and were able to satisfy them. We confirmed that
the drone was responsive to the "LAUNCH" command (O1.1), and that the drone reached the
desired altitude and hover in place for 30s by reading the output of the pose topic,
/mavros/local_position/pose (O1.2). After the verification in simulation, we tested our
implementation on the real drone. As seen in Figure 4, our approach successfully satisfied all our
metrics, suggesting that we satisfied all the high level objectives. Due to our high performance
with sensors only, we chose to perform our Vicon test with on-board sensors only as well, and
achieved similar results.



Figure 4: Successful implementation of challenge task 2 in both simulation and real life.

Figure 5: Depicts our performance for Challenge Task 2. Depicts our performance when testing
using on-board sensors only. Our drone's maximum altitude deviation was 2.5 cm relative to±

1.5 m, and our maximum heading deviation was about 0.05 rad.±

4.2 Challenge Task 3

4.2.1 Challenge Description
The third challenge task aims to have the drone navigate a set of waypoints sequentially. Each
waypoint is a 3D point in space that the drone must visit. This task consists of 3 parts:

1. The drone must takeoff after receiving a LAUNCH command, as in Challenge Task 2
2. Follow the set of waypoints published when receiving the TEST command.
3. The drone must land upon receiving the LAND command upon completing the trajectory.

Once again, this task contains two modes (1) - flying with Vicon data available and (2) - flying
with on-board sensing only.

4.2.2. Objectives and Task Functional Analysis Metrics



This section summarizes the objectives we had for our drone, and the metrics we used to ensure
that the drone satisfied each one. The objectives from Challenge Task 2 apply (O1.1, O1.2 and
O1.3) but have been omitted for the sake of brevity.
O2.1: The drone must visit every waypoint sequentially and in order

● M2.1.1:Within 35 cm of a waypoint when using both on-board sensors and Vicon data.
○ Criteria: Drone must be able to reach a waypoint using either on-board sensors

and Vicon Data.
● M2.1.2: Closest distance to each waypoint after a trajectory.

○ Criteria: The drone must be within 35cm of the center of each waypoint.
● M2.1.3: Number of waypoints traversed in order

○ Criteria: All 7 waypoints must be traversed in order.

O2.2: The drone should navigate through all the waypoints quickly
● M2.2.1: Time to traverse all waypoints.

○ Criteria: The drone must navigate through all waypoints in under 60 seconds
○ Constraint: This must be accomplished under 120 seconds.

4.2.3. Challenge Task 3 Design Overview

Figure 6: Challenge Task 3 pipeline as an extension to Challenge Task 2.

We begin by first launching and wait until we achieve a stable hover. Once we are satisfied with
the hover and receive the TEST command, we take the last published Vicon frame, and then
compute the transformation between the drone’s frame (based on our local pose) and the world
frame.

Once this transformation is computed, we transform all the waypoints into the drone's local
frame, and then we perform a cubic spline fit to generate a trajectory traversing all the
waypoints. We leverage scipy's interpolation module to perform this cubic spline fit. We chose to
do a spline fit in order to ensure that the drone follows a smooth path when trying to navigate to
each waypoint, making it kinematically easy to follow and limits the possibility of a jerk
occurring, which can lead to an increase in error or accidents.

Finally, for our controller, we leverage a simple position-based pure pursuit controller. This is
done by continuously updating the setpoint that our drone must follow to be a "look ahead"
distance away. We chose this approach because it was a fairly simple controller to implement,



and allowed us to tune our controller for high speed relatively easily. However, one major
downside of our controller was the fact that it doesn't employ any guarantee that we'll reach a
waypoint, which sometimes led to us missing waypoints. In order to solve this, we added a
guarantee by checking if we're close to a goal, and if we are, we chose to target the goal and
“wiggle” near it in the shape of a box, in an attempt to make sure that we reached the goal.

4.2.4. Challenge Task 3 Results

Figure 7: Trajectory of our algorithm under simulation alongside plots to see how our position
changes in the 3 axes

Before testing our algorithm using our physical drone, we opted to first our drone in a simulated
environment. Our simulations performed as we’d expect, following the desired trajectory
perfectly.

We then decided to try our algorithm on the drone itself. We first tried a practice run using the
practice waypoints. Our drone ended up flying too high, as there was a mistake in the Vicon
Frame to drone frame transformation, which resulted in the vertical distance being added twice
and as such made our drone fly an extra 1.5m higher than it should have.

As stated earlier, we compute the frame transformation between the drone and the world frame
by first hovering, and once we are satisfied with the hover and receive the TEST command, we
take the last published Vicon frame, and then compute the transformation between the drone’s
frame (based on our local pose) and the world frame. This method has its drawbacks, as it is
possible for the Vicon frame to be misaligned with the current frame being used. Using
interpolation or timestamp matching could have reduced the error we have experienced.

After fixing the transformation, we opted to undertake the Vicon-less test, which resulted in our
drone following a smooth trajectory and reaching all 7 waypoints. See the above two graphs for



our drone’s trajectory. We were able to conclude that our drone has met all of our objectives for
this challenge task.

4.3 Challenge Task 4
4.3.1 Challenge Description
Similar to Challenge Task 3, this task aims to have the drone navigate a set of waypoints
sequentially, but with obstacles placed at arbitrary locations in the environment. The obstacles
added to the environment are four yellow cylinders with a diameter of 30 cm. The positions of
these obstacles are unknown prior to flying. Additionally, these obstacles have colored letters
painted on them, with red letters denoting that the drone should fly to the left of the obstacle
(clockwise) and green denoting that the drone should fly to the right of the obstacle
(counter-clockwise). The red obstacles also have black bands. Finally, the direction constraint
only needs to be followed if the drone is within a 1.0 m radius from the center of the obstacle.

4.3.2. Objectives and Task Functional Analysis Metrics
O3.1: The drone must visit every waypoint sequentially

● M3.1.1:Within 35 cm of a waypoint when using both on-board sensors and Vicon data.
○ Criteria: Drone must be able to reach a waypoint using either on-board sensors

and Vicon Data.
● M3.1.2: Closest distance to each waypoint after a trajectory.

○ Criteria: The drone must be within 35cm of the center of each waypoint.
● M3.1.3: Number of waypoints traversed in order

○ Criteria: All 7 waypoints must be traversed in order.

O3.2: The drone should navigate through all the waypoints quickly
● M3.2.1: Time to traverse all waypoints.

○ Criteria: The drone must navigate through all waypoints in under 75 seconds
○ Constraint: This must be accomplished under 135 seconds.

O3.3: The drone should avoid obstacles autonomously
● M3.3.1: Number of collisions per flight

○ Constraint: There should be no collisions in the flight

O3.4: The drone should respect the direction denoted by an obstacle
● M3.4.1: Number of violations per flight

○ Constraint: There should be no violations.

4.3.3. Challenge Task 4 Design Overview



Figure 8: Our Challenge Task 4 pipeline depicting how we build on top of our previous pipelines

The pipeline builds from our Challenge Task 3 pipeline by adding obstacle avoidance. While
navigating, we leverage the color camera to detect the yellow obstacles, and use the diameter of
the obstacle to estimate the distance we to the object.

Our obstacle detection algorithm runs in its own node, called ColorDetector. Our algorithm to
detect if we are in range of the yellow obstacles can be summarized as:

1. Receive an image from the camera node.
2. Undistort the image and convert it to the HSV color-space.
3. Perform a histogram equalization on the Saturation Channel of the HSV image and

recombine the image with the new S channel.
4. Perform an in-range threshold to keep pixels that are between particular H, S and V

values. This forms a binary mask consisting of yellow pixels only.
5. Get the contours of the binary mask and search for the largest contour (by area). During

search, we filter candidate contours by ensuring that they are greater than a minimum
pixel width, and that it has a larger width than it does height.

6. If there are no contours that are valid, then return no detected obstacle.
7. Otherwise, find the minimum area rectangle of the contour, and find the maximum width

of it. This will be the disparity value.
8. Calculate the depth of the obstacle using the focal length of the camera, the diameter of

the object (30 cm) and the disparity from before.
9. If computed depth is less than some distance threshold (e.g. 1.25 m), then return that we

are not within range of the obstacle. Otherwise, perform direction detection.

This algorithm returns either True, we are within 1.25 m of the object, or False, we are not. We
chose to undistort the images we received to remove any imperfections within the image, and
ensure that our depth estimation can be as accurate as it can be. We leveraged the HSV color
space for yellow detection because we found that it was easier to tune [3], as "similar-looking"



colors have similar hue values, which is unlike the RGB color space. By performing histogram
equalization on the saturation channel, it was then easier to filter out grays in the background that
can be confused with yellow when the image is dark, and ensures that our tuning works in a
wider range of lighting conditions. We chose to flag an obstacle being detected at 1.25m rather
than 1m so that our planning algorithm can have a bit more space to plan around the obstacle.

If we are within 1.25 m, we perform direction detection in the ColorDetector node. The
algorithm to perform direction detection can be summarized as:

1. The image should still be in the HSV color space, with the equalized Saturation channel.
2. Use the yellow mask from the previous step and all the detected contours. Fill the

detected contours using a flood fill algorithm to create a new yellow mask that has all
contours filled. The minimum area rectangle from the previous step should also be
available.

3. Use the minimum area rectangle from the previous step to crop the image. This is done
leaving the height of the image alone, but cropping the image so it was between the
smallest width and largest width of the minimum area rectangle of the largest contour. We
also add some padding (of 10 pixels) to ensure that underestimations don't affect the crop.

4. Use the filled yellow mask from step 2 to mask out anything detected in the background
that is not the detected obstacle. This will form a new HSV image that is cropped and
filtered to contain only pixels of the obstacle

5. Within the filtered HSV image, detect green pixels by detecting any pixels that are
in-range between particular H, S and V pixels

6. Perform a morphological operation of opening to remove any noisy pixel detections.
7. Sum all the pixels within the green mask and ensure it exceeds a defined threshold. If it

exceeds the threshold, then consider the direction as "RIGHT", otherwise define it as
"LEFT"

The algorithm this time defines the direction that the drone should aim to traverse. The algorithm
logic is largely the same as yellow direction, however we chose to filter and crop the HSV image
to ensure that all we have within the image is the obstacle of interest. Our cropping method was
selected because we noticed edge cases with an homography approach, so we chose to keep
things simple and instead crop a bounding box around the obstacle of interest (with some
padding), which we found to work more reliably.

For color detection, we tried a few different approaches, including band detection, contour based
detection of green vs red and green-detection. We found that both of the first two methods had
failure cases. For band detection, we found it unreliable to detect the bands since across all
viewpoints, the bands may not be straight horizontal lines. Additionally, sometimes, we'd detect
aspects of the background as an obstacle. During such cases, using band detection would tell us
to go "RIGHT", rather than give us a way to detect false positives. As a result of this, we decided
to scrap band detection and aim to purely use color detection.

As for the alternative, contour detection based on green vs red, we found that we would often
have parts of the orange Myhal chairs in the background that would accidentally be detected as
being red letters.



During our testing, we found that green detection offered much more reliable results, likely due
to how distinct green is in the environment. Introducing morphological-based filtering made the
algorithm even more robust from false-positives. Given that we aim to detect letters and
obstacles further away from the obstacle itself, the letters detected were small in the image. As
such, we decided to threshold based on the amount of pixels in the green mask rather than using
contour-based detection.

Once our color detection outputs a direction, our obstacle avoidance algorithm, which is
subscribed to the direction topic, receives the course of action to avoid the obstacle. We use a
rolling window of actions as a consensus mechanism to decide on our course of action. If 10
consecutive messages from the direction topic tell us to avoid the obstacle by moving in one
direction, we take that action.

After coming to a consensus about the presence of the obstacle we then create 2 additional
waypoints to avoid the obstacle while complying to the direction constraints. These waypoints
are then added to the start of our waypoint list. After passing these new waypoints, we then try to
reach the nearest waypoint from our original trajectory.

Figure 9: Obstacle Avoidance algorithm simulated in Desmos



4.3.4. Challenge Task 4 Results

Figure 10: Top: Picture of our drone accomplishing CT4. Bottom: Trajectory of our drone when
testing CT4.



To test our solution’s effectiveness, we first created a simulated environment, including the
obstacles. We created a virtual 2D lidar sensor that can scan the environment and detect the
presence and location of obstacles. With this setup, we were able to test if our
algorithmically-generated waypoints to avoid the obstacles gave the drone enough clearance to
safely avoid the obstacle.

To test our obstacle detection algorithms, we first calibrated our camera using openCV’s camera
calibration functions. Using it, we were able to get the camera’s intrinsics matrix and distortion
coefficients, enough to enable us to calibrate our cameras.

We then manually flew our drone in the flight arena near the obstacles and recorded footage of
our drone near obstacles. Using these videos, we tested our code offboard, to evaluate the drone’s
behavior. See Figure 11 for a sample of our processing pipeline. After tuning the HSV thresholds
for yellow and green, we were ready to test.

When we performed our test, we managed to make it to 4 of the 7 waypoints without colliding. 2
of the waypoints were almost reached, but we believe they were missed due to the drift of the
visual odometry. Given how close the last waypoint was to the obstacle, our drone ended up
colliding after completing the task, but was thankfully not damaged. This means that this design
has failed objective O3.1. See Figure 10 for the results. Given the time constraints we were
operating under, we did not have the time to test again.

Figure 11: Object recognition and processing of a camera frame. Left picture is the frame
annotated with the prescribed direction command, along with the estimated distance to the

obstacle in meters. Right is the obstacle mask.

4.4 Challenge Task 5: Bonus
4.4.1 Challenge Description
This bonus Challenge Task’s aim is to decode a sign in the Yautja language. There are 4 numbers
written on the board that reveal a location. We are provided with a conversion table to convert
from these Yautja numbers to arabic numerals. This task must be completed using the drone’s
jetson and camera. Upon completing the decoding, the message must be published to a ROS
topic, a message of type std_msgs/Int16MultiArray.

4.4.2. Objectives and Task Functional Analysis Metrics



O4.1: The algorithm should be able to detect the Yautja numbers and parse them
● M4.4.1: Algorithm can identify the numbers from the background

○ Criteria: Should be able to identify numbers from the environment

● M4.4.2: Algorithm can parse numbers correctly
○ Criteria: Algorithm should not mix numbers up

4.4.3. Challenge Task 5 Design Overview
Our simple algorithm to achieving letter detection is as follows:

1. Grayscale image and undistort it using camera matrix.
2. Threshold the background to only include out the “paper region”, which defines the area

of the four pieces of paper the letters are printed on.
3. Determine a bounding box to identify the four points that define the paper region.
4. Use a homography matrix to transform and crop the rectangular area of the four points so

that the resulting image is horizontal.
5. Divide the homography image into 4 even regions.
6. Determine the number of horizontal and vertical lines there are in each segment, which is

enough to uniquely identify each of the letters.

4.4.4. Challenge Task 5 Results
We were successful in completing the challenge task. One issue that we had faced was that our
thresholding method was not working well when the letters were against a yellow board. The
reason is because during thresholding, it was grouping the white and the yellow together and it
wasn’t able to differentiate the paper from the board. More tuning with the thresholding was
necessary to fix this problem. See Figures 12 and 13 for the images taken during the tests.

Figure 12: Picture of our drone in front of the board it is trying to decipher.



Figure 13: From top left, right and bottom: Processing of an image frame, from the initial
picture of the board, the numbers isolated from the picture and the individually parsed Yautja

numbers.
5 Lessons We Learned
Throughout this course, we gained invaluable insights into engineering design, autonomous
drone navigation, and obstacle avoidance. Despite the knowledge acquired, we also faced
numerous challenges. This section discusses the challenges we encountered, to serve as feedback
for the course. We also reflect on the things we wish we had done differently and provide advice
for future students to learn from our experiences.

5.1 Technical Related Challenges
During this course, our team faced several technical challenges. We were able to resolve most of
them, thanks to the support of the teaching team. The table below summarizes the problems we
encountered and the solutions we suggest to address them.

Issue Description Suggested Solutions



Testing Times

Our team faced significant wait times for
testing our drone. This issue was common
among all teams and likely impeded
controller tuning. At times, we had to wait
up to 3-4 hours for just 20 minutes of flight
time.

1. Set up a simulation for the entire
course to enable testing in a simulated
environment.

2. If possible, establish an additional
testing room without Vicon for teams
to collect data or debug drone issues.

Jetson Overheating

Our Jetson would often overheat, even
during operation, causing system lag and
poor performance. In some cases, this led
to the drone behaving unexpectedly, such
as flying uncontrollably towards the
ceiling.

Provide teams with fans to ensure the
Jetson remains cool during operation.

Difficulty setting up
Vicon

We had trouble getting the Vicon to work
with our drone, and due to time
constraints, we couldn't spend enough time
debugging the issue. Consequently, all our
flights did not utilize Vicon data.

Offer a tutorial for teams on how to use
Vicon data through
qgroundcontrol/MAVROS instead of
the Realsense T265.

Transformation
between Vicon and
drone's local pose

As mentioned in our Challenge Task 3
solution evaluation, we faced difficulties in
transforming between the Vicon pose and
the drone's local pose. Testing these
transformations without actually flying
was challenging.

Set up the ROS tf tree to automate this
transformation for teams or provide a
library for automating this
transformation. This would allow
teams to focus on controller tuning
rather than dealing with transformation
errors.



Not enough test trials

During a test run, hardware issues could
arise, and there shouldn't be a hard limit on
the number of trials a team has. Limiting
trials may penalize teams for random
hardware failures.

Avoid imposing a limit on testing
trials, which would promote rapid
testing/prototyping and reduce stress
associated with testing.

Strict marking for
missing waypoints

We found the penalty for missing a
waypoint to be a bit unfair, especially
when chance played a significant role in
the drone's success in reaching waypoints.

Implement a decaying function-based
scoring system, allowing teams to
receive partial points for almost
reaching waypoints.

No ability to 'unit
test' functionality

The course marks were largely based on
the integration of multiple complex
components, making it difficult to test
functionalities separately.

Break down testing into smaller, more
achievable milestones, allowing teams
to receive marks for successful
individual components.

5.2 Collaboration Related Challenges
During the course, our team also ran into some collaboration issues. Once again, we were able to
resolve most of them. The table below summarizes the collaboration issues we ran into and our
recommendations for solutions.

Issue Description Suggested Solutions

Difficult to Parallelize
Tasks

Due to the nature of how the
challenge tasks were released, it
made it very difficult to parallelize
tasks.

We recommend releasing all the challenge
tasks at the start of the course, rather than in
a rolling fashion. This way teams can better
plan what to do ahead of time.



Disagreements on
approach

Different team members sometimes
had conflicting ideas about how to
approach a problem due to not
knowing what would work the best,
which led to delays in
decision-making.

Reach a consensus on the best approach, and
be willing to adapt if a chosen approach
proves ineffective.

Have TAs review team’s approaches and
provide relevant feedback which might help
them be more confident towards their
approach.

Uneven workload
distribution

Some team members had to take on
more tasks than others, due to
difficulty in accurately assessing
how hard the tasks were (both
underestimation and
overestimation)

Regularly assess the workload distribution
within the team and make adjustments as
needed to ensure a more equitable
distribution of responsibilities.

Seek feedback from TAs to get a better sense
of how much time should be allocated to a
given task

Inefficient meetings

Some meetings were unproductive,
with discussions veering off-topic
or team members unprepared to
contribute meaningfully.

Establish clear agendas for meetings, and
ensure all team members come prepared to
discuss their assigned tasks and any issues
they have encountered.

Commute

Our team consisted largely of
commuting, who lived fairly far
away from campus. This made
working with hardware (e.g. testing,
etc).

We were able to partially mitigate issues by
leveraging simulation, but we believe that
having more spaces open for testing, or
having a strict flight schedule defined the day
before a team goes in would be useful so that
commuters can better plan whether they
should come to the flight arena or not.

By addressing these collaboration-related challenges, future teams can work more effectively
together and achieve better outcomes in the course.

5.3 Things We Wish We Did Differently



● Better time management: Allocating sufficient time for debugging and testing,
especially for complex tasks that require the integration of multiple components.

● Improved communication: Ensuring regular team meetings and updates to keep
everyone informed about the progress and potential issues.

● Early focus on controller tuning: We would have benefited from spending more time
on controller tuning early in the course, as this could have significantly improved our
drone's overall performance.

● More emphasis on simulations: We should have used simulations more extensively to
test and refine our algorithms, reducing the need for physical testing time.

● Encourage cross-functional understanding: Ensuring all team members had a basic
understanding of each other's work, which would have fostered better collaboration and
reduced bottlenecks.

5.4 Advice for Future Generations
● Start early: Begin working on the course projects as soon as possible to ensure adequate

time for testing, debugging, and refining your solutions.
● Utilize simulations: Make the most of simulations to test and iterate on your designs,

reducing the need for physical testing time.
● Prioritize controller tuning: Spend sufficient time on controller tuning early in the

course, as this can have a significant impact on your drone's performance.
● Collaborate effectively: Foster an environment of open communication and

collaboration within your team. This will help you address issues more effectively and
learn from each other.

● Learn from previous teams: Review the experiences and lessons learned from previous
teams, as this can provide valuable insights and help you avoid similar pitfalls.

6 References

[1] Norman, D. A. (2013). The Design of Everyday Things: Revised and Expanded Edition.
Basic Books

[2] Quengineering. “Jetson-Nano-Ubuntu-20-image”.
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image. GitHub. Accessed April 22,
2023

[3] Clockmaker LLC. “HSV Color Range Thresholding”.
https://learncodebygaming.com/blog/hsv-color-range-thresholding. Modified. July 14, 2020.
Accessed April 22, 2023

https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image
https://learncodebygaming.com/blog/hsv-color-range-thresholding

